DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2013-09-15 - Colloque/Présentation - poster - Espagnol - 1 page(s)

Rubio Magnieto Jenifer , Thomas amandine, Ahmad Mehdi, Lazzaroni Roberto , Clement Sebastien, Surin Mathieu , "Dna/π-conjugated polymer supramolecular structures: insights into the self-assembly" in XXXIV Reunión Bienal de la Real Sociedad Española de Química, Santander, España, 2013

  • Codes CREF : Chimie des polymères de synthèse (DI131C)
  • Unités de recherche UMONS : Chimie des matériaux nouveaux (S817)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
  • Centres UMONS : Centre d’Innovation et de Recherche en Matériaux Polymères (CIRMAP)

Abstract(s) :

(Anglais) Water-soluble -conjugated polymers (CPs) have been recently designed as good candidates for developing aqueous optical sensing systems, because their optical response are very sensitive conformation and supramolecular assembly.1 In this frame, the design of cationic polythiophenes (PT),2 has attracted much interest, as they represent a versatile, central class of -conjugated polymers for organic electronics. Here we present our recent studies on the design and self-assembly of a series of cationic polythiophenes in interaction with various specific DNA. By means of (chir)optical spectroscopy we have studied the influence of the PT side groups, DNA sequence and topology (single-stranded vs double-stranded), and composition, in order to establish the structure-properties relationships and to give insights into the self-assembly mechanisms. Importantly, we have observed that DNA sequence-specific interactions are at play upon self-assembly with CPE, with ICD signatures that relate to the right- or left-handed conformational chirality of polymer backbone within the supramolecular duplexes. These results indicate the possibility of using these cationic polymers for designing hybrid structures with specific functional nucleic acids, such as G-quadruplex structures, aptamers, etc. in order to evolve towards specific optical (bio)sensors.