DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2021-12-27 - Article/Dans un journal avec peer-review - Anglais - 53 page(s)

Francois Jordan , Parrini Noémie , Boulanger Nicolas , "Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions" in Journal of High Energy Physics, JHEP 12 (2021) 186

  • Edition : Springer, Heidelberg (Germany)
  • Codes CREF : Physique théorique et mathématique (DI1210), Mécanique quantique classique et relativiste (DI1211), Gravitation (DI1216), Théorie quantique des champs (DI1215)
  • Unités de recherche UMONS : Physique de l'Univers, Champs et Gravitation (S827)
  • Instituts UMONS : Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Algèbre, Géométrie et Interactions fondamentales (AGIF)
Texte intégral :

Abstract(s) :

(Anglais) In this note, we consider how the bundle geometry of field space interplays with the covariant phase space methods so as to allow to write results of some generality on the presymplectic structure of invariant gauge theories coupled to matter. We obtain in particular the generic form of Noether charges associated with field-independent and field- dependent gauge parameters, as well as their Poisson bracket. We also provide the general field-dependent gauge transformations of the presymplectic potential and 2-form, which clearly highlights the problem posed by boundaries in generic situations. We then conduct a comparative analysis of two strategies recently considered to evade the boundary problem and associate a modified symplectic structure to a gauge theory over a bounded region: namely the use of edge modes on the one hand, and of variational connections on the other. To do so, we first try to give the clearest geometric account of both, showing in particular that edge modes are a special case of a differential geometric tool of gauge symmetry reduction known as the “dressing field method”. Applications to Yang-Mills theory and General Relativity reproduce or generalise several results of the recent literature.

Identifiants :
  • arXiv : https://arxiv.org/abs/2109.07159
  • DOI : 10.1007/JHEP12(2021)186