DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2019-05-10 - Colloque/Présentation - communication orale - Anglais - page(s)

Mestiri Monia , "Common upper frequent hypercyclicity" in FNRS Group Functional Analysis, Liège, Belgique, 2019

  • Codes CREF : Analyse fonctionnelle (DI1122)
  • Unités de recherche UMONS : Probabilité et statistique (S844)
  • Instituts UMONS : Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Modélisation mathématique et informatique (CREMMI)

Abstract(s) :

(Anglais) An operator on a Banach space is called hypercyclic if it possesses a dense orbit; it is called upper-frequently hypercyclic if it possesses an orbit that is not only dense but that meets every non-empty open set ‘very often’. Considering a family of operators, a vector is called a common hypercyclic vector if it is hypercyclic for each operator of the family. Most results on common hypercyclicity are based on a fundamental theorem in linear dynamics: the transitivity theorem of Birkhoff. In this talk we will focus on common upper-frequent hypercyclicity. Adapting the ideas of common hypercyclicity criterion we will give some positive results. Finally we will explain an approach to obtain non-existence theorems.