DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2014-01-22 - Article/Dans un journal avec peer-review - Anglais - 10 page(s)

Amribt Zakaria, Dewasme Laurent , Vande Wouwer Alain , Bogaerts Philippe, "Optimization and robustness analysis of hybridoma cell fed-batch cultures using the overflow metabolism model" in Bioprocess and Biosystems Engineering, 37, 1637-1652

  • Edition : Springer (Germany)
  • Codes CREF : Sciences de l'ingénieur (DI2000), Biotechnologie (DI3800), Automatique (DI2530)
  • Unités de recherche UMONS : Automatique (F107)
  • Instituts UMONS : Institut des Biosciences (Biosciences)
  • Centres UMONS : Biosys (BIOSYS)

Abstract(s) :

(Anglais) The maximization of biomass productivity in fed-batch cultures of hybridoma cells is analyzed based on the overflow metabolism model. Due to overflow metabolism, often attributed to limited oxygen capacity, lactate and ammonia are formed when the substrate concentrations (glucose and glutamine) are above a critical value, which results in a decrease in biomass productivity. Optimal feeding rate, on the one hand, for a single feed stream containing both glucose and glutamine and, on the other hand, for two separate feed streams of glucose and glutamine are determined using a Nelder-Mead simplex optimization algorithm. The optimal multi exponential feed rate trajectory improves the biomass productivity by 10% as compared to the optimal single exponential feed rate. Moreover, this result is validated by the one obtained with the analytical approach in which glucose and glutamine are fed to the culture such as to control the hybridoma cells at the critical metabolic state, which allows maximizing the biomass productivity. The robustness analysis of optimal feeding profiles obtained with different optimization strategies is considered, first, with respect to parameter uncertainties and, finally, with respect to model structure errors.