DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2010-09-20 - Colloque/Article dans les actes avec comité de lecture - Anglais - 8 page(s)

Mahmoudi Sidi , Lecron Fabian , Manneback Pierre , Benjelloun Mohammed , Mahmoudi Said , "GPU-based segmentation of cervical vertebra in X-Ray images" in IEEE International Conference on Cluster Computing, Crete, Greece, 2010

  • Codes CREF : Techniques d'imagerie et traitement d'images (DI2770), Informatique médicale (DI3314), Technologie informatique hardware (DI2560), Informatique appliquée logiciel (DI2570)
  • Unités de recherche UMONS : Informatique, Logiciel et Intelligence artificielle (F114)
  • Instituts UMONS : Institut NUMEDIART pour les Technologies des Arts Numériques (Numédiart)
  • Centres UMONS : Biosys (BIOSYS)
Texte intégral :

Abstract(s) :

(Anglais) The segmentation of cervical vertebra in X-Ray radiographs can give valuable information for the study of the vertebral mobility. One particular characteristic of the X-Ray images is that they present very low grey level variation and makes the segmentation difficult to perform. In this paper, we propose a segmentation procedure based on the Active Shape Model to deal with this issue. However, this application is seriously hampered by its considerable computation time. We present how vertebra extraction can efficiently be performed in exploiting the vast processing power of the Graphics Processing Units (GPU). We propose a CUDA-based GPU implementation of the most intensive processing steps enabling to boost performance. Experimentations have been conducted using a set of high resolution X-Ray medical images, showing a global speedup ranging from 15 to 21, by comparison with the CPU implementation.