DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2021-12-04 - Article/Dans un journal avec peer-review - Anglais - 7 page(s)

Melik Wafa, Boumerzoug Zakaria, Delaunois Fabienne , "Solide State Diffusion Bonding of Al6061-SiC Nanocomposites" in International Journal of Automotive and Mechanical Engineering, 18, 4, 9305-9311

  • Edition : Universiti Malaysia Pahang
  • Codes CREF : Matériaux composites (DI2726), Soudage (DI2132), Matériaux céramiques et poudres (DI2744), Métallographie (DI2330)
  • Unités de recherche UMONS : Métallurgie (F601)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
  • Centres UMONS : Ingénierie des matériaux (CRIM)
Texte intégral :

Abstract(s) :

(Anglais) Aluminium matrix composites are both strong and lightweight, and are limited in their applications due to the proper choice of welding process. Conventional welding that is based on fusion at the welded joint is not suitable because it leads to the formation of certain defects at the welded joint. For this reason, solid-state welding such as diffusion bonding is one of the suitable joining methods, as there will be no melting of any of the constituents. The solid-state diffusion bonding at 520° C of Al6061-SiC nanocomposites was investigated. This composite material was made by powder metallurgy, where aluminium alloy Al6061 was selected as the base metal, and SiC nanoparticles with an average size of 50 nm were added as reinforced particles. The effects of bonding time on the microstructures and mechanical properties of the welded material were investigated. The main characterisation techniques were optical microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction, and microhardness measurements. We have found that increasing the holding time up to 3 h at 520° C strengthens the weldability of the two basic composite materials and increases their hardness. X-ray diffraction analysis did not reveal any new phase during diffusion welding; it is considered one of the advantages of using the solid-state diffusion welding technique for the assembly of this kind of composite material. The welding success of this composite material widens its field of use, such as the automotive or space industry, because it is a light material with high mechanical properties.

(Anglais) Aluminium matrix composites are both strong and lightweight, and are limited in their applications due to the proper choice of welding process. Conventional welding that is based on fusion at the welded joint is not suitable because it leads to the formation of certain defects at the welded joint. For this reason, solid-state welding such as diffusion bonding is one of the suitable joining methods, as there will be no melting of any of the constituents. The solid-state diffusion bonding at 520° C of Al6061-SiC nanocomposites was investigated. This composite material was made by powder metallurgy, where aluminium alloy Al6061 was selected as the base metal, and SiC nanoparticles with an average size of 50 nm were added as reinforced particles. The effects of bonding time on the microstructures and mechanical properties of the welded material were investigated. The main characterisation techniques were optical microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction, and microhardness measurements. We have found that increasing the holding time up to 3 h at 520° C strengthens the weldability of the two basic composite materials and increases their hardness. X-ray diffraction analysis did not reveal any new phase during diffusion welding; it is considered one of the advantages of using the solid-state diffusion welding technique for the assembly of this kind of composite material. The welding success of this composite material widens its field of use, such as the automotive or space industry, because it is a light material with high mechanical properties.


Mots-clés :
  • (Anglais) Bonding time
  • (Anglais) Al-SiC nanocomposites
  • (Anglais) Diffusion bonding
  • (Anglais) Powder metallurgy