DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2019-05-16 - Article/Dans un journal avec peer-review - Anglais - 8 page(s)

Si Ying, Lao Jiajie, Xuejun Zhang, Yuke Liu, Cai Shunshuo, Gonzalez Vila Alvaro , Kaiwei Li, Huang Yunyun, Yuan Yong, Caucheteur Christophe , Guo Tuan, "Electrochemical Plasmonic Fiber-optic Sensors for Ultra-Sensitive Heavy Metal Detection" in Journal of Lightwave Technology, 37, 14, 3495-3502, 10.1109/JLT.2019.2917329

  • Edition : Optical Society of America (NY)
  • Codes CREF : Optique des fibres (électromagnétisme) (DI1252)
  • Unités de recherche UMONS : Electromagnétisme et Télécommunications (F108)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
  • Centres UMONS : Ingénierie des matériaux (CRIM)
Texte intégral :

Abstract(s) :

(Anglais) Real-time and high-sensitivity monitoring of heavy metal ions in solution is of great significance in environmental monitoring. The traditional electrochemical methods suffer from electrochemical noise and environmental interferences for heavy metal trace detection. To address these issues, we propose a novel electrochemical surface plasmon resonance (EC-SPR) optical fiber sensor. The sensor comprises a tilted fiber Bragg grating imprinted in a commercial single-mode fiber and coated with a nanoscale gold film for high-efficiency SPR excitation. The gold-coated optical fiber serves as a working electrode, performing the dual functions of anodic stripping voltammetry and SPR optical sensing. We demonstrate detection of Pb2+ as an example of a typical heavy metal ion. We show a stable and reproducible correlation between the real-time ion deposition–stripping cycles and the optical transmission of the optical fiber, with a limit of detection of 10−10 M and a dynamic range of nearly five orders of magnitude. Moreover, by taking derivative of the SPR amplitude change, we can clearly identify the peak stripping potential of the detected ions, and therefore, realize specific ion identification. The method proposed is inherently immune to temperature cross-talk because the core mode is temperature-dependent but insensitive to the surrounding media. The proposed EC-SPR fiber-optic sensor has the advantages of compact size, flexible shape, and remote operation capability, thereby, open- ing the way for other opportunities for electrochemical monitoring in various hard-to-reach locations and remote environments.