DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2013-12-14 - Article/Dans un journal avec peer-review - Anglais - 36 page(s)

Boulanger Nicolas , Ponomarev Dmitri, Skvortsov Evgeny, Taronna Massimo, "On the uniqueness of higher-spin symmetries in AdS and CFT" in International Journal of Modern Physics A : Particles & Fields, Gravitation, Cosmology, Nuclear Physics, Int. J. Mod. Phys. A 28, 1350162 (2013)

  • Edition : World Scientific Publishing Company, Singapore (Singapore)
  • Codes CREF : Physique théorique et mathématique (DI1210), Mécanique quantique classique et relativiste (DI1211), Gravitation (DI1216), Théorie quantique des champs (DI1215)
  • Unités de recherche UMONS : Mécanique et gravitation (S884)
  • Instituts UMONS : Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Algèbre, Géométrie et Interactions fondamentales (AGIF)

Abstract(s) :

(Anglais) We study the uniqueness of higher-spin algebras which are at the core of higher-spin theories in AdS and of CFTs with exact higher-spin symmetry, i.e. conserved tensors of rank greater than two. The Jacobi identity for the gauge algebra is the simplest consistency test that appears at the quartic order for a gauge theory. Similarly, the algebra of charges in a CFT must also obey the Jacobi identity. These algebras are essentially the same. Solving the Jacobi identity under some simplifying assumptions listed out, we obtain that the Eastwood–Vasiliev algebra is the unique solution for d = 4 and d≥7. In 5d, there is a one-parameter family of algebras that was known before. In particular, we show that the introduction of a single higher-spin gauge field/current automatically requires the infinite tower of higher-spin gauge fields/currents. The result implies that from all the admissible non-Abelian cubic vertices in AdSd, that have been recently classified for totally symmetric higher-spin gauge fields, only one vertex can pass the Jacobi consistency test. This cubic vertex is associated with a gauge deformation that is the germ of the Eastwood–Vasiliev's higher-spin algebra.

Identifiants :
  • arXiv : 1305.5180
  • DOI : 10.1142/S0217751X13501625

Mots-clés :
  • (Anglais) higher-spin gravity