DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2014-10-20 - Colloque/Présentation - communication orale - Anglais - 1 page(s)

Rubio Magnieto Jenifer , Thomas Amandine, Clement Sebastien, Lazzaroni Roberto , Surin Mathieu , "Design of hybridization biosensors via self-assembly of DNA / π-conjugated polyelectrolytes" in Bioinspired Materials Conference. COST Action TD 1003, Ankara, Turquie, 2014

  • Codes CREF : Chimie des polymères de synthèse (DI131C)
  • Unités de recherche UMONS : Chimie des matériaux nouveaux (S817)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux), Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Centre d’Innovation et de Recherche en Matériaux Polymères (CIRMAP)
Texte intégral :

Abstract(s) :

(Anglais) The design of bio-inspired compounds and the development of self-assembly models within supramolecular nanostructures have acquired great relevance during the last years, with promising applications in different areas, ranging from materials science to medicine. In this frame, the design of hybrid self-assembled systems based on conjugated polymers and biomolecules has attracted many researchers. These hybrid supramolecular systems can be utilized for instance for the identification of proteins, and for the determination of very low DNA concentrations. Furthermore, conjugated polymers-based biosensors can also be used for the detection of Single-Nucleotide Polymorphism in DNA hybridization experiments, to identify neurodegenerative diseases.1 Here, we present our recent results on the design of a new class of hybrid supramolecular structures based on the self-assembly of cationic -conjugated polythiophenes (CPT) and DNA (well-defined, short oligonucleotides). By using chiroptical spectroscopy, we examine three important processes for the functioning of DNA-DNA hybridization biosensors: complexation, hybridization, and melting properties. Importantly, we show that sequence, length, and topology of DNA strongly influence the conformation of the final supramolecular complex, especially the chirality of the polymer backbone, with specific right- or left-handed assemblies within the supramolecular system.2

Identifiants :
  • FNRS : the grant n°2.4615.11-BINDER
  • FNRS : the grant n°1.B333.15F-QUIRNATES