DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2005-10-08 - Article/Dans un journal avec peer-review - Anglais - 1 page(s)

Gierschner J., Ehni M., Egelhaaf H.J., Milian Medina B., Beljonne David , Benmansour H., Bazan G.C, "Solid-State Optical Properties of Linear Polyconjugated Molecules: p-Stack Contra Herringbone" in Journal of Chemical Physics, 123, 14, 144914

  • Edition : American Institute of Physics, New York (NY)
  • Codes CREF : Physique de l'état condense [struct., électronique, etc.] (DI1266)
  • Unités de recherche UMONS : Chimie des matériaux nouveaux (S817)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
Texte intégral :

Abstract(s) :

(Anglais) The intermolecular arrangement in the solid state and the consequences on the optical and photophysical properties are studied on different derivatives of oligophenylenevinylenes by UV/VIS absorption and angular-resolved polarized fluorescence spectroscopy. Unsubstituted distyrylbenzene (DSB) organizes in a herringbone manner, with the long axes of the molecules oriented in parallel, but the short axes almost perpendicular to each other. Fluorinated distyrylbenzene (F12DSB) as well as the DSB:F12DSB cocrystals prefer cofacial p-stacking in the solid state. For all structures, the consequence of the parallel alignment of the transition moments is a strongly blueshifted H-type absorption spectrum and a low radiative rate constant kF. Significant differences are observed for the emission spectra: the perpendicular arrangement of the short axes in DSB crystals leads to only very weak intermolecular vibronic coupling. Hence the emission spectrum is well structured, very similar to the one in solution. For F12DSB and DSB:F12DSB, the cofacial arrangement of the adjacent molecules enables strong intermolecular vibronic coupling of adjacent molecules. Thus, an unstructured and strongly redshifted excimerlike emission spectrum is observed. The differences in the electronic nature of the excited states are highlighted by quantum-chemical calculations, revealing the contribution of interchain excitations to the electronic transitions.

Notes :
  • (Anglais) Publié en ligne le 12 octobre 2005
Identifiants :
  • DOI : 10.1063/1.2062028