DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2021-12-02 - Article/Dans un journal avec peer-review - Anglais - 13 page(s)

Boulanger Nicolas , Buisseret Fabien , Lhost Guillaume, "A First-Quantized Model for Unparticles and Gauge Theories around Conformal Window" in Universe, Universe 7 (2021) 12, 471

  • Codes CREF : Physique théorique et mathématique (DI1210), Mécanique quantique classique et relativiste (DI1211), Gravitation (DI1216), Théorie quantique des champs (DI1215)
  • Unités de recherche UMONS : Physique de l'Univers, Champs et Gravitation (S827)
  • Instituts UMONS : Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Algèbre, Géométrie et Interactions fondamentales (AGIF)
Texte intégral :

Abstract(s) :

(Anglais) We first quantize the action proposed by Casalbuoni and Gomis in [Phys. Rev. D \textbf{90}, 026001 (2014)], an action that describes two massless relativistic scalar particles interacting via a conformally invariant potential. The spectrum is a continuum of massive states that may be interpreted as unparticles. We then obtain in a similar way the mass operator for a deformed action in which two terms are introduced that break the conformal symmetry: a mass term and an extra position-dependent coupling constant. A simple Ansatz for the latter leads to a mass operator with linear confinement in terms of an effective string tension $\sigma\,$. The quantized model is confining when $\sigma\neq0$ and its mass spectrum shows Regge trajectories. We propose a tensionless limit in which highly excited confined states reduce to (gapped) unparticles. Moreover, the low-lying confined bound states become massless in the latter limit as a sign of conformal symmetry restoration and the ratio between their masses and $\sqrt\sigma$ stays constant. The originality of our approach is that it applies to both confining and conformal phases via an effective interacting model.

Identifiants :
  • DOI : 10.3390/universe7120471
  • arXiv : 2110.11469 [hep-th]