DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2016-06-01 - Colloque/Présentation - poster - Anglais - 1 page(s)

Mirisola Aldo , Ronneau Robin, Koy Daniel, Thomas Diane , Hantson Anne-Lise , "Optimization of lipid extraction in microalgae strains using different pre-treatment methods" in 12th edition of the International Conference on Renewable Resources and Biorefineries, Gand, Belgique, 2016

  • Codes CREF : Biochimie (DI3112), Bio-énergétique (DI311B), Biotechnologie (DI3800), Chimie analytique (DI1314)
  • Unités de recherche UMONS : Génie des Procédés chimiques et biochimiques (F505)
  • Instituts UMONS : Institut des Biosciences (Biosciences)
  • Centres UMONS : Biosys (BIOSYS)

Abstract(s) :

(Anglais) The world is nowadays facing three main environmental problems: the increase of energy demand, the upcoming limitation of non-renewable fuel reserves (fossil fuels) and the high levels of pollution caused by their use [1], [2]. Aware of these problems, the scientific community is looking for both, ways to find new renewable sources of energy, and to make better use of it. Among the alternative solutions, microalgae cultures in photobioreactors (PBR) appear to be suitable for the CO2 sequestration by photosynthesis[3], [4], and can be used for the synthesis of high added-value products (antioxidants, anti-cancer drugs, etc.) and other metabolites that can be processed into biofuels (lipids that lead to biodiesel, carbohydrates that lead to bioethanol, etc.) [5]–[7]. The direct extraction of lipids, without pre-treatments, for strains that have a rigid cell wall (e.g. Chlorella vulgaris, Scenedesmus obliquus, Cyanidium caldarium) leads to results below the actual lipid content of the cells. The purpose of this work is to optimize the lipids extraction method thanks to physical (freeze drying, autoclave, sonication, microwaves) or chemical (H2SO4) pretreatments for the above-mentioned strains. References: [1] “BP Statistical Review of World Energy, 2014.,” 2014. [2] “Climate change: How do we know?,” 2015. [Online]. Available: http://climate.nasa.gov/evidence/. [Accessed: 15-Jun-2015]. [3] K. Kumar, C. N. Dasgupta, B. Nayak, P. Lindblad, and D. Das, “Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria,” Bioresource Technology, vol. 102, no. 8. pp. 4945–4953, 2011. [4] S. H. Ho, C. Y. Chen, D. J. Lee, and J. S. Chang, “Perspectives on microalgal CO2-emission mitigation systems - A review,” Biotechnology Advances, vol. 29, no. 2. pp. 189–198, 2011. [5] M. Vigani, C. Parisi, E. Rodríguez-Cerezo, M. J. Barbosa, L. Sijtsma, M. Ploeg, and C. Enzing, “Food and feed products from micro-algae: Market opportunities and challenges for the EU,” Trends Food Sci. Technol., 2015. [6] E. Talero, J. Avila-Roman, and V. Motilva, “Chemoprevention with Phytonutrients and Microalgae Products in Chronic Inflammation and Colon Cancer,” Current Pharmaceutical Design, vol. 18, no. 26. pp. 3939–3965, 2012. [7] T. M. Mata, A. A. Martins, and N. S. Caetano, “Microalgae for biodiesel production and other applications: A review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1. pp. 217–232, 2010.