DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2020-05-06 - Colloque/Article dans les actes avec comité de lecture - Anglais - 5 page(s)

Brousmiche Mathilde , Rouat Jean, Dupont Stéphane , "SECL-UMONS DATABASE FOR SOUND EVENT CLASSIFICATION AND LOCALIZATION" in IEEE International Conference on Acoustics, Speech, and Signal Processing, Barcelona, Spain, 2020

  • Codes CREF : Intelligence artificielle (DI1180)
  • Unités de recherche UMONS : Théorie des circuits et Traitement du signal (F105)
  • Instituts UMONS : Institut NUMEDIART pour les Technologies des Arts Numériques (Numédiart)

Abstract(s) :

(Anglais) We introduce the SECL-UMons dataset for sound event classification and localization in the context of office environments. The multichannel dataset is composed of 11 event classes recorded at several realistic positions in two different rooms. The dataset comprises two types of sequences according to the number of events in the sequence. 2662 unilabel sequences and 2724 multilabel sequences are recorded corresponding to a total of 5.24 hours. The database is publicly available to provide support for algorithm development and common ground for comparison of different techniques. The DCASE 2019 challenge baseline (SELDnet) employing a convolutional recurrent neural network is used to generate benchmark scores for the new dataset. We also slightly modify the model to introduce a benchmark score for real-time classification and localization for the new dataset.

Identifiants :
  • DOI : 10.1109/ICASSP40776.2020.9053298

Mots-clés :
  • (Anglais) Sound Event Classification
  • (Anglais) Sound Source Localization
  • (Anglais) Dataset