DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2022-02-14 - Article/Compte-rendu - Anglais - 13 page(s)

Debauche Olivier , Mahmoudi Said , Guttadauria Adriano , "A new edge computing architecture for IoT and multimedia data management" in Information

  • Edition : Multidisciplinary Digital Publishing Institute (MDPI) (Switzerland)
  • Codes CREF : Sciences agronomiques (DI3600), Informatique générale (DI1162)
  • Unités de recherche UMONS : Informatique, Logiciel et Intelligence artificielle (F114)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech), Institut NUMEDIART pour les Technologies des Arts Numériques (Numédiart)
Texte intégral :

Abstract(s) :

(Anglais) The Internet of Things and multimedia devices generate a tremendous amount of data. The transfer of this data to the cloud is a challenging problem because of the congestion at the network level, and therefore processing time could be too long when we use a pure cloud computing strategy. On the other hand, new applications requiring the processing of large amounts of data in real time have gradually emerged, such as virtual reality and augmented reality. These new applications have gradually won over users and developed a demand for near real-time interaction of their applications, which has completely called into question the way we process and store data. To address these two problems of congestion and computing time, edge architecture has emerged with the goal of processing data as close as possible to users, and to ensure privacy protection and responsiveness in real-time. With the continuous increase in computing power, amounts of memory and data storage at the level of smartphone and connected objects, it is now possible to process data as close as possible to sensors or directly on users devices. The coupling of these two types of processing as close as possible to the data and to the user opens up new perspectives in terms of services. In this paper, we present a new distributed edge architecture aiming to process and store Internet of Things and multimedia data close to the data producer, offering fast response time (closer to real time) in order to meet the demands of modern applications. To do this, the processing at the level of the producers of data collaborate with the processing ready for the users, establishing a new paradigm of short supply circuit for data transmission inspired of short supply chains in agriculture. The removing of unnecessary intermediaries between the producer and the consumer of the data improves efficiency. We named this new paradigm the Short Supply Circuit Internet of Things (SSCIoT).

Identifiants :
  • DOI : 10.3390/info13020089

Mots-clés :
  • (Anglais) Edge Computing
  • (Anglais) multimedia management
  • (Anglais) Internet of Things
  • (Anglais) A2IoT
  • (Anglais) image analysis