DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2019-11-01 - Article/Dans un journal avec peer-review - Anglais - 11 page(s)

Laribi Sinda, Dubois Lionel , De Weireld Guy , Thomas Diane , "Study of the post-combustion CO2 capture process by absorption regeneration using amine solvents applied to cement plant flue gases with high CO2 contents" in International Journal of Greenhouse Gas Control, 90, 102799, 10.1016/j.ijggc.2019.102799

  • Edition : Elsevier (Netherlands)
  • Codes CREF : Traitement des effluents gazeux (DI3843), Génie chimique (DI2721), Chimie (DI1300)
  • Unités de recherche UMONS : Génie des Procédés chimiques et biochimiques (F505), Thermodynamique, Physique mathématique (F506)
  • Instituts UMONS : Institut de Recherche en Energétique (Energie)
Texte intégral :

Abstract(s) :

(Anglais) The present study is focusing on the investigation, for the cement industry, of the post-combustion CO2 capture process using amine(s)-based solvents. The novel aspect of the work is the flue gas considered, namely the high CO2 contents (between 20 and 60 vol.%), representative of flue gases coming from oxygen-enriched air combustion process (also called partial oxy-fuel combustion). Using the results of preliminary solvents screening tests at laboratory scale, absorption-regeneration micro-pilot experiments were carried out for the best solvents in order to characterize their respective absorption and regeneration performances. The use of the activated solution of DEA (diethanolamine) 30 wt.% with PZ (piperazine) 5 wt.% led to particularly high absorption performances in all CO2 concentration range. Besides the experimental measurements, Aspen Hysys™ simulations of the micro-pilot tests were performed for three solvents (monoethanolamine (MEA) as the reference case, then PZ and DEA+PZ) to validate the models implemented. Finally, the validated models were used to perform industrial scale simulations. These simulations confirmed that both the regeneration energy, the equivalent work and the operating costs are reduced when the absorption-regeneration process is implemented to flue gases with high CO2 contents.