DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2005-03-14 - Article/Dans un journal avec peer-review - Anglais - 11 page(s)

Nabar Y., Raquez Jean Marie , Dubois Philippe , Narayan R., "Production of starch foams by twin-screw extruder : effect of maleated-poly(butylene adipate-co-terephthalate) as a compatibilizer" in Biomacromolecules, 6, 2, 807-817

  • Edition : American Chemical Society, Washington (DC)
  • Codes CREF : Chimie macromoléculaire (DI1315), Catalyses hétérogène et homogène (DI1334)
  • Unités de recherche UMONS : Matériaux Polymères et Composites (S816)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
Texte intégral :

Abstract(s) :

(Anglais) Free-radical-initiated grafting of maleic anhydride (MA) onto poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable aliphatic-aromatic copolyester, was performed by reactive extrusion. 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane was used as the free-radical initiator. The peroxide concentration was varied between 0.0 and 0.5 wt % at 3.0 wt % MA concentration; the MA concentration was varied between 1.0 and 5.0 wt % at 0.5 wt % peroxide concentration. The reaction temperature was maintained at 185 °C for all experiments. Under these conditions, between 0.194% and 0.691% MA was grafted onto the polyester backbone. Size-exclusion chromatography, melt flow index, intrinsic viscosity measurements, thermal gravimetric analysis, and differential scanning calorimetry were used to characterize the maleated copolyester. Increasing the initiator concentration at a constant MA concentration of 3% resulted in an increase in the grafting of MA while decreasing the molecular weight of the resulting polymer. Increasing the feed MA concentration also increased the grafting percentage. The maleation of the polyester proved to be very efficient in promoting strong interfacial adhesion with high amylose cornstarch in starch foams as prepared by melt blending. Thus, the use of maleated copolyester as a compatibilizer between starch and PBAT allowed the reduction of the density of resulting starch foams to 21 kg/m3 and improved the resilience from 84% to as high as 95%. Also, the resulting starch foams exhibited improved hydrophobic properties in terms of lower weight gain and higher dimensional stability on moisture sorption.

Identifiants :
  • DOI : 10.1021/bm0494242