DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2013-09-13 - Colloque/Abstract - Anglais - 1 page(s)

Cormier Pierre-Antoine , "Energy flux measurements at the substrate position during reactive and non reactive magnetron sputter deposition processes" in 19th International Vacuum Congress (IVC), Paris, France, 2013

  • Codes CREF : Chimie des surfaces et des interfaces (DI1327), Chimie inorganique (DI1312)
  • Unités de recherche UMONS : Chimie des interactions plasma-surface (S882)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
  • Centres UMONS : Centre d’Innovation et de Recherche en Matériaux Polymères (CIRMAP)
Texte intégral :

Abstract(s) :

(Anglais) Energy flux measurements at the substrate position during reactive and non reactive magnetron sputter deposition processes P.-A. Cormier2, A. Balhamri2,3 A.-L. Thomann1, R. Dussart1, N. Semmar1, T. Lecas1, R. Snyders2,4 and S. Konstantinidis2 1GREMI, Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex 2, France 2Laboratoire de Chimie des Interactions Plasma-Surface, Université de Mons, 23 Place du Parc, 7000 Mons, Belgium 3Laboratoire Rayonnement & Matiere: Laboratoire d’Optique Appliquée et Transfert d’Energie (LOPATE), Faculté des Sciences et Techniques de Settat, Université Hassan 1, B.P. 461 Settat, Marocco 4Materia Nova R & D Center, Avenue Copernic 1, Mons, Belgium During thin film deposition processes, energetic conditions at the substrate surface influence the thin film characteristics such as density, crystalline structure or roughness. Determining the energy flux at the substrate is therefore of particular relevance for the understanding of thin film growth mechanisms [1]. In this contribution, we have quantified the total energy flux at the substrate position by using heat flux sensor designed for working in PVD processes [2]. The increased sensitivity of the probe allowed differentiating fast energy transfer originating from the bombardment of the plasma species (e.g. ions and electrons) from radiation flux emanating from the heated target surface. DC magnetron sputtering (DCMS), Pulsed dc magnetron sputtering (pDCMS) and high power impulse magnetron sputtering (HiPIMS) discharges were analyzed. The sputter power delivered to the Ti target, the magnetic field configuration (unabalanced or balanced), the total pressure, and the gas mixture (O2 in Ar) were systematically varied. The use of an unbalanced magnetic field is found to significantly increase the energy transferred to the film, whatever the discharge type. Moreover, in situation where the plasma is confined to the target vicinity (balanced field), the target surface heating is enhanced during pulsed processes and large radiative IR fluxes are measured. This contribution is found to be the most significant energy transfer process during the HiPIMS process run with the balanced magnetron target. Finally, when oxygen is added to the gas mixture, the energy flux decreases as the discharge enters the oxidized regime and it exhibits a hysteresis. Energy flux values are correlated to TiO2 thin film properties in some particular cases. REFERENCES [1] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene. Microstructural evolution during film growth. 21 (2003) S117–S128 f [2] A.-L. Thomann, N. Semmar, R. Dussart, J. Mathias, and V. Lang. Diagnostic system for plasma/surface energy transfer characterization, Review of Scientific Instruments, 77(3):033501, (2006)