DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2022-02-17 - Article/Dans un journal avec peer-review - Anglais - 87 page(s)

Campoleoni Andrea , Pekar Simon , "Carrollian and Galilean conformal higher-spin algebras in any dimensions" in Journal of High Energy Physics, 02, 1-87, 150

  • Edition : Springer, Heidelberg (Germany)
  • Codes CREF : Physique théorique et mathématique (DI1210)
  • Unités de recherche UMONS : Physique de l'Univers, Champs et Gravitation (S827)
  • Instituts UMONS : Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Algèbre, Géométrie et Interactions fondamentales (AGIF)
Texte intégral :

Abstract(s) :

(Anglais) We present higher-spin algebras containing a Poincaré subalgebra and with the same set of generators as the Lie algebras that are relevant to Vasiliev’s equations in any space-time dimension D ≥ 3. Given these properties, they can be considered either as candidate rigid symmetries for higher-spin gauge theories in Minkowski space or as Carrollian conformal higher-spin symmetries in one less dimension. We build these Lie algebras as quotients of the universal enveloping algebra of iso(1,D−1) and we show how to recover them as Inönü-Wigner contractions of the rigid symmetries of higher-spin gauge theories in Anti de Sitter space or, equivalently, of relativistic conformal higher- spin symmetries. We use the same techniques to also define higher-spin algebras with the same set of generators and containing a Galilean conformal subalgebra, to be interpreted as non-relativistic limits of the conformal symmetries of a free scalar field. We begin by showing that the known flat-space higher-spin algebras in three dimensions can be obtained as quotients of the universal enveloping algebra of iso(1,2) and then we extend the analysis along the same lines to a generic number of space-time dimensions. We also discuss the peculiarities that emerge for D = 5.

Identifiants :
  • DOI : 10.1007/JHEP02(2022)150
  • arXiv : 2110.07794 [hep-th]