DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2019-11-23 - Article/Dans un journal avec peer-review - Anglais - 15 page(s)

Laraba Sohaib , Tilmanne Joëlle , Dutoit Thierry , "Leveraging Pre-trained CNN Models for Skeleton-Based Action Recognition" in International Conference on Computer Vision Systems, 1, 612-626

  • Codes CREF : Sciences de l'ingénieur (DI2000), Informatique mathématique (DI1160)
  • Unités de recherche UMONS : Théorie des circuits et Traitement du signal (F105)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech), Institut NUMEDIART pour les Technologies des Arts Numériques (Numédiart)
Texte intégral :

Abstract(s) :

(Anglais) Skeleton-based human action recognition has recently drawn increasing attention thanks to the availability of low-cost motion capture devices, and accessibility of large-scale 3D skeleton datasets. One of the key challenges in action recognition lies in the high dimensionality of the captured data. In recent works, researchers draw inspiration from the success of deep learning in computer vision in order to improve the performances of action recognition systems. Unfortunately, most of these studies do not leverage different available deep architectures but develop new architectures. Most of the available architecture achieve very high accuracy in different image classification problems. In this paper, we use these architectures that are already pre-trained on other image classification tasks. Skeleton sequences are first transformed into image-like data representation. The resulting images are used to train different state-of-the-art CNN architectures following different training procedures. The experimental results obtained on the popular NTU RGB+D dataset, are very promising and outperform most of the state-of-the-art results.