DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2009-05-01 - Article/Dans un journal avec peer-review - Anglais - 22 page(s)

Bruyère Véronique , Mélot Hadrien , "Fibonacci index and stability number of graphs: a polyhedral study" in Journal of Combinatorial Optimization, 18, 207 – 228

  • Edition : Springer, Dordrecht (The Netherlands)
  • Codes CREF : Théorie des graphes (DI1146), Informatique mathématique (DI1160)
  • Unités de recherche UMONS : Algorithmique (S825), Informatique théorique (S829)
Texte intégral :

Abstract(s) :

(Anglais) The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Turán graphs frequently appear in extremal graph theory. We show that Turán graphs and a connected variant of them are also extremal for these particular problems. We also make a polyhedral study by establishing all the optimal linear inequalities for the stability number and the Fibonacci index, inside the classes of general and connected graphs of order n.

Notes :
  • (Anglais) ISNN1573-2886 (Online)
Identifiants :
  • ISSN : 1382-6905