DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2009-09-10 - Article/Dans un journal avec peer-review - Anglais - 16 page(s)

Brihaye Yves , Caebergs Thierry , Hartmann Betti, Minkov M., "Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls" in Physical Review. D : Particles and Fields, 80, 6, 064014-064029

  • Edition : American Physical Society, College Park (MD)
  • Codes CREF : Physique des particules élémentaires (DI1221), Physique théorique et mathématique (DI1210), Mécanique quantique classique et relativiste (DI1211)
  • Unités de recherche UMONS : Physique théorique et mathématique (S814), Physique nucléaire et subnucléaire (S824)
Texte intégral :

Abstract(s) :

(Anglais) We investigate the properties of interacting Q-balls and boson stars that sit on top of each other in great detail. The model that describes these solutions is essentially a (gravitating) two-scalar field model where both scalar fields are complex. We construct interacting Q-balls or boson stars with arbitrarily small charges but finite mass. We observe that in the interacting case—where the interaction can be either due to the potential or due to gravity—two types of solutions exist for equal frequencies: one for which the two-scalar fields are equal, but also one for which the two-scalar fields differ. This constitutes a symmetry breaking in the model. While for Q-balls asymmetric solutions have always corresponding symmetric solutions and are thus likely unstable to decay to symmetric solutions with lower energy, there exists a parameter regime for interacting boson stars, where only asymmetric solutions exist. We present the domain of existence for two interacting nonrotating solutions as well as for solutions describing the interaction between rotating and nonrotating Q-balls and boson stars, respectively.

Notes :
  • (Anglais) e-print: 0903.5419
Identifiants :
  • DOI : 10.1103/PhysRevD.80.064014