DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2008-04-01 - Article/Dans un journal avec peer-review - Anglais - 7 page(s)

Benali Samira , Peeterbroeck Sophie , Larrieu J., Laffineur F., Pireaux Jean-Jacques, Alexandre M., Dubois Philippe , "Study of interlayer spacing collapse during polymer/clay nanocomposites melt intercalation" in Journal of Nanoscience and Nanotechnology, 8, 4, 1707-1713

  • Edition : Amer Scientific Publishers, Stevenson Ranch (CA)
  • Codes CREF : Chimie macromoléculaire (DI1315), Catalyses hétérogène et homogène (DI1334)
  • Unités de recherche UMONS : Matériaux Polymères et Composites (S816)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
Texte intégral :

Abstract(s) :

(Anglais) The influence of the chemical structure of alkylammonium organo-modifying montmorillonite clays on the ability to form nanocomposites by melt blending, depending on the processing temperature and the organoclay thermal treatment, has been investigated. On one side chlorinated polyethylene/Cloisite®30B (nano)composite has been prepared by melt intercalation at 175 °C and its wide angle X-ray diffraction pattern revealed that the peak characteristic of the interlayer spacing of the organoclay was shifted to lower d-spacing, indicating a collapse of the organoclay structure. On the other side, (nano)composites based on ethylene-vinyl acetate copolymer/Cloisite®30B have been prepared by melt intercalation at 140 °C. At this temperature, exfoliation was observed with the as-received organoclay while the same organo-modified clay, simply dried at 180 °C for 2 hours, induced again the formation of a composite with a collapsed structure. The effect of the Cloisite®30B thermal treatment on the morphology and mechanical properties of ethylene-vinyl acetate-based (nano)composites was investigated using wide angle X-ray diffraction and tensile tests. In order to shed some light on the origin of this clay interlayer collapse, organoclay modified with various ammonium cations bearing long alkyl chains with different amounts of unsaturations were studied using wide angle X-ray diffraction and X-ray photoelectron spectroscopy before and after thermal treatment at 180 °C for 2 hours. Isothermal thermogravimetric analysis of all organoclays was also investigated. The layers collapse effect is discussed depending upon the level of unsatured hydrocarbon present in the organic surfactant.

Identifiants :
  • DOI : 10.1166/jnn.2008.020