DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2005-02-17 - Article/Dans un journal avec peer-review - Anglais - 6 page(s)

Alberg M., Bawin M., Brau Fabian , "Renormalization of the singular attractive 1/ r4 potential" in Physical Review. A, 71, Issue 2, 1-6, 022108

  • Edition : American Physical Society, College Park (MD)
  • Codes CREF : Physique théorique et mathématique (DI1210), Mécanique quantique classique et relativiste (DI1211)
  • Unités de recherche UMONS : Laboratoire Interfaces et Fluides complexes (S885)
Texte intégral :

Abstract(s) :

(Anglais) We study the radial Schrödinger equation for a particle of mass m in the field of a singular attractive g2/r4 potential with particular emphasis on the bound-states problem. Using the regularization method of Beane et al. [Phys. Rev. A 64, 042103 (2001)], we solve analytically the corresponding “renormalization-group flow” equation. We find in agreement with previous studies that its solution exhibits a limit cycle behavior and has infinitely many branches. We show that a continuous choice for the solution corresponds to a given fixed number of bound states and to low-energy phase shifts that vary continuously with energy. We study in detail the connection between this regularization method and a conventional method modifying the short-range part of the potential with an infinitely repulsive hard core. We show that both methods yield bound-states results in close agreement even though the regularization method of Beane et al. does not include explicitly any new scale in the problem. We further illustrate the use of the regularization method in the computation of electron bound states in the field of neutral polarizable molecules without dipole moment. We find the binding energy of s-wave polarization bound electrons in the field of C60 molecules to be 17 meV for a scattering length corresponding to a hard-core radius of the size of the molecule radius (~3.37 Å). This result can be further compared with recent two-parameter fits using the Lennard-Jones potential yielding binding energies ranging from 3 to 25 meV.

Notes :
  • (Anglais) quant-ph/0412112
Identifiants :
  • DOI : 10.1103/PhysRevA.71.022108