DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2008-03-11 - Travail avec promoteur/Doctorat - Français - 285 page(s)

Bette Sébastien , "Contribution à l'étude des propriétés spectrales des réseaux de Bragg fibrés : Analyse et exploitation des propriétés de polarisation", Mégret Patrice , Moeyaert Véronique , soutenue le 2008-03-11

  • Edition : Faculté Polytechnique de Mons
  • Codes CREF : Sciences de l'ingénieur (DI2000)
  • Jury : Lobry Jacques (p) , Wuilpart Marc , Blondel Michel, Berghmans F., Goussarov A., Février S., Joindot M.
  • Unités de recherche UMONS : Electromagnétisme et Télécommunications (F108)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech)
  • Centres UMONS : Technologie Information et Communication (TIC)
Texte intégral :

Abstract(s) :

(Français) Un réseau de Bragg fibré est un tronçon de fibre optique dont le coeur présente une modification périodique et permanente de l’indice de réfraction. Dans sa structure la plus simple, il se comporte, en réflexion, comme un miroir sélectif en longueur d’onde, ne réfléchissant qu’une plage de longueurs d’onde autour de la longueur d’onde de Bragg. Le signal transmis est alors débarrassé des composantes spectrales réfléchies par le réseau de Bragg. Ce composant fibré correspond donc à un filtre optique pour lequel il est important de caractériser les évolutions, en fonction de la longueur d’onde, des réponses en amplitude et en phase. En pratique, les réseaux de Bragg fibrés sont largement utilisés pour la réalisation de différents composants utiles dans le domaine des télécommunications par fibres et des capteurs optiques. De manière générale, il s’avère de plus en plus important de caractériser les propriétés de polarisation induites par la présence de biréfringence des composants optiques ; il en est de même pour les réseaux de Bragg fibrés. En effet, avec l’augmentation des débits de transmission, les communications par fibres optiques sont de moins en moins tolérantes aux effets associés à la polarisation de la lumière. L’utilisation des réseaux de Bragg pour des applications de télécommunications requiert donc de connaître leurs propriétés de polarisation. De même, dans le domaine des capteurs, l’information offerte par l’évolution de ces propriétés en fonction des contraintes extérieures peut être utile pour améliorer les performances et les potentialités des capteurs à réseaux de Bragg. Dans le cadre de cette thèse de doctorat, nous présentons une étude des propriétés spectrales des réseaux de Bragg fibrés en y incluant l’analyse des propriétés de polarisation de la lumière causées par la présence de biréfringence au sein du réseau. Cette étude est menée pour deux catégories de réseaux de Bragg présentant de la biréfringence. Une première catégorie concerne les réseaux inscrits dans des fibres hautement biréfringentes. Pour ces fibres, étant donné les valeurs importantes de biréfringence considérées, ses effets sont directement visibles sur la réponse classique en amplitude. Dans ce cas, nous démontrons qu’il est possible de modéliser complètement les évolutions, en fonction de la longueur d’onde, des paramètres permettant de caractériser les propriétés de polarisation des réseaux de Bragg. Une étude théorique et expérimentale est présentée pour les paramètres de Stokes, le paramètre de PDL (Polarisation Dependent Loss - perte dépendante de la polarisation) et le paramètre de DGD (Differential Group Delay - délai de groupe différentiel). Une seconde étude est menée pour les réseaux de Bragg inscrits dans des fibres standards. Pour ces réseaux, la biréfringence est relativement faible si bien que ses effets sont difficilement perceptibles sur la réponse en amplitude du réseau. Elle n’est donc généralement pas prise en considération lors de l’analyse des propriétés spectrales des réseaux. Nous montrons cependant dans cette thèse de doctorat qu’elle conduit à des valeurs importantes des paramètres de polarisation (paramètres de Stokes, PDL et DGD). Compte tenu des différentes origines possibles de la biréfringence des réseaux, nous exposons deux modèles caractérisant la présence de la biréfringence. Les résultats théoriques obtenus pour ces deux modèles sont alors systématiquement comparés. Nous rapportons finalement des résultats expérimentaux en adéquation avec les résultats théoriques. Pour ces réseaux de Bragg faiblement biréfringents, nous établissons également la relation qui existe entre les paramètres utilisés pour caractériser les propriétés de phase du réseau (courbes de délai et de dispersion) et les paramètres de Stokes et de DGD. En particulier, nous démontrons théoriquement et expérimentalement que les évolutions en fonction de la longueur d’onde de la dispersion chromatique et du DGD ne diffèrent que dans leur valeur absolue, le rapport de ces valeurs étant proportionnel à la biréfringence. En outre, nous discutons la possibilité d’appliquer cette relation à d’autres types de réseaux fibrés et présentons des résultats expérimentaux dans le cas d’un réseau à longs pas. Une application intéressante de la connaissance des paramètres de polarisation des réseaux de Bragg est la détermination de la biréfringence. Nous considérons d’une part le cas d’une biréfringence causée par une contrainte transverse appliquée sur une fibre optique. Nous montrons qu’un réseau de Bragg est utilisable à l’endroit de la contrainte pour obtenir la quantité de biréfringence induite localement. D’autre part, les propriétés de polarisation sont utilisées pour étudier l’évolution de la biréfringence induite lors du processus d’inscription d’une série de réseaux de Bragg de caractéristiques différentes. La reconstruction de la biréfringence de cette série permet alors d’analyser l’impact des paramètres de l’inscription sur la biréfringence photoinduite. Nous proposons finalement une technique originale permettant de réduire les effets de la biréfringence des réseaux. Cette technique est basée sur l’application d’une torsion de la fibre lors de l’inscription, ce qui permet d’introduire du couplage de modes de polarisation au niveau du réseau de Bragg. L’analyse théorique des propriétés spectrales des réseaux menée dans le cas classique est alors adaptée pour tenir compte de l’effet du couplage de modes. Les résultats de simulation obtenus montrent qu’il est en effet possible de réduire la PDL et le DGD de cette manière, ce qui peut s’avérer intéressant dans le cadre d’applications de télécommunications à haut débit.