DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2008-08-01 - Article/Dans un journal avec peer-review - Anglais - 23 page(s)

Bonheure D., Bouchez V., Grumiau Christopher , Van Schaftingen J., "Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth" in Communications in Contemporary Mathematics, 10, 4, 609-631

  • Edition : World Scientific Publishing Company
  • Codes CREF : Analyse fonctionnelle (DI1122), Analyse mathématique (DI1120), Equations différentielles et aux dérivées partielles (DI1127)
  • Unités de recherche UMONS : Analyse numérique (S835)
  • Instituts UMONS : Institut de Recherche sur les Systèmes Complexes (Complexys)
Texte intégral :

Abstract(s) :

(Anglais) In this paper, we consider the Lane–Emden problem, where O is a bounded domain in RN and p > 2. First, we prove that, for p close to 2, the solution is unique once we fix the projection on the second eigenspace. From this uniqueness property, we deduce partial symmetries of least energy nodal solutions. We also analyze the asymptotic behavior of least energy nodal solutions as p goes to 2. Namely, any accumulation point of sequences of (renormalized) least energy nodal solutions is a second eigenfunction that minimizes a reduced functional on a reduced Nehari manifold. From this asymptotic behavior, we also deduce an example of symmetry breaking. We use numerics to illustrate our results.

Identifiants :
  • DOI : 10.1142/S0219199708002910