DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2019-11-01 - Article/Dans un journal avec peer-review - Anglais - page(s)

Ben Souissi Souhir, Abed Mourad, El Hiki Lahcen , Fortemps Philippe , Pirlot Marc , "PARS, a system combining semantic technologies with multiple criteria decision aiding for supporting antibiotic prescriptions" in Journal of Biomedical Informatics, 99, 103304

  • Edition : Elsevier (FL)
  • Codes CREF : Intelligence artificielle (DI1180), Modèles mathématiques d'aide à la décision (DI1151), Informatique médicale (DI3314)
  • Unités de recherche UMONS : Management de l'Innovation Technologique (F113), Mathématique et Recherche opérationnelle (F151)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech), Institut des Sciences et du Management des Risques (Risques)
Texte intégral :

Abstract(s) :

(Anglais) Motivated by the well documented worldwide spread of adverse drug events, as well as the increased danger of antibiotic resistance (caused mainly by inappropriate prescribing and overuse), we propose a novel recommendation system for antibiotic prescription (PARS). Method: Our approach is based on the combination of semantic technologies with MCDA (Multiple Criteria Decision Aiding) that allowed us to build a two level decision support model. Given a specific domain, the approach assesses the adequacy of an alternative/action (prescription of antibiotic) for a specific subject (patient) with an issue (bacterial infection) in a given context (medical). The goal of the first level of the decision support model is to select the set of alternatives which have the potential to be suitable. Then the second level sorts the alternatives into categories according to their adequacy using an MCDA sorting method (MR–Sort with Veto) and a structured set of description logic queries. Results: We applied this approach in the domain of antibiotic prescriptions, working closely with the EpiCura Hospital Center (BE). Its performance was compared to the EpiCura recommendation guidelines which are currently in use. The results showed that the proposed system is more consistent in its recommendations when compared with the static EpiCura guidelines. Moreover, with PARS the antibiotic prescribing workflow becomes more flexible. PARS allows the user (physician) to update incrementally and dynamically a patient's profile with more information, or to input knowledge modifications that accommodate the decision context (like the introduction of new side effects and antibiotics, the development of germs that are resistant, etc). At the end of our evaluation, we detail a number of limitations of the current version of PARS and discuss future perspectives.

Mots-clés :
  • (Anglais) Antibiotic prescription
  • (Anglais) Ontology
  • (Anglais) Multiple criteria decision aiding
  • (Anglais) Decision support systems, clinical
  • (Anglais) Decision support systems
  • (Anglais) Explanation