DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2017-10-01 - Colloque/Article dans les actes avec comité de lecture - Anglais - 8 page(s)

Rafailidis Dimitrios , Crestani Fabio, "Recommendation with Social Relationships via Deep Learning" in International Conference on the Theory of Information Retrieval, Amsterdam, Holland, 2017

  • Codes CREF : Informatique générale (DI1162)
  • Unités de recherche UMONS : Systèmes d'information (S832)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech), Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Modélisation mathématique et informatique (CREMMI)

Abstract(s) :

(Anglais) While users trust the selections of their social friends in recommendation systems, the preferences of friends do not necessarily match. In this study, we introduce a deep learning approach to learn both about user preferences and the social influence of friends when generating recommendations. In our model we design a deep learning architecture by stacking multiple marginalized Denoising Autoencoders. We define a joint objective function to enforce the latent representation of social relationships in the Autoencoder's hidden layer to be as close as possible to the users' latent representation when factorizing the user-item matrix. We formulate a joint objective function as a minimization problem to learn both user preferences and friends' social influence and we present an optimization algorithm to solve the joint minimization problem. To the best of our knowledge this is the first work that tries to learn the influence of friends on users' preferences with deep learning. Our experiments on four benchmark datasets show that the proposed approach achieves high recommendation accuracy, compared to other state-of-the-art methods.