DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2008-09-01 - Article/Dans un journal avec peer-review - Anglais - 8 page(s)

Raquez Jean Marie , Nabar Y., Narayan R., Dubois Philippe , "In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion" in Polymer Engineering & Science, 48, 9, 1747-1754

  • Edition : John Wiley & Sons, Inc. - Engineering
  • Codes CREF : Chimie macromoléculaire (DI1315), Catalyses hétérogène et homogène (DI1334)
  • Unités de recherche UMONS : Matériaux Polymères et Composites (S816)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
Texte intégral :

Abstract(s) :

(Anglais) This article concerns the utilization of maleated thermoplastic starch (MTPS) in the reactive extrusion melt-blending with poly(butylene adipate-co-terephthalate) (PBAT) in blown film applications. First, MTPS was prepared from cornstarch with glycerol (plasticizer) and maleic anhydride (MA; esterification agent). MTPS was then melt-blended with PBAT in a subsequent downstream extrusion operation. The effects of both polyester and MA contents were studied on the physicochemical parameters of melt-blends. For high polyester fractions (>60 wt%), PBAT-g-MTPS graft copolymers were obtained through transesterification reactions. They were promoted by the MA-derived acidic moieties grafted onto the starch backbone as shown by selective Soxhlet extraction experiments and FTIR analyses. At lower polyester content, no significant reaction occurred more likely due to an inversion in the phase morphology between both components. Tensile properties of PBAT-g-MTPS graft copolymer containing 70 wt% polyester were much higher as the TPS/PBAT melt-blend modified with MA. This can be explained by a finer morphology of the dispersed phase in the continuous PBAT matrix, and an increased interfacial area for the grafting reaction as attested by morphological studies.

Identifiants :
  • DOI : 10.1002/pen.21136