DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2017-08-27 - Colloque/Article dans les actes avec comité de lecture - Anglais - 9 page(s)

Rafailidis Dimitrios , Crestani Fabio, "Learning to Rank with Trust and Distrust in Recommender Systems" in ACM Conference on Recommender Systems, Como, Italy, 2017

  • Codes CREF : Informatique générale (DI1162)
  • Unités de recherche UMONS : Systèmes d'information (S832)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech), Institut de Recherche sur les Systèmes Complexes (Complexys)
  • Centres UMONS : Modélisation mathématique et informatique (CREMMI)

Abstract(s) :

(Anglais) The sparsity of users' preferences can significantly degrade the quality of recommendations in the collaborative filtering strategy. To account for the fact that the selections of social friends and foes may improve the recommendation accuracy, we propose a learning to rank model that exploits users' trust and distrust relationships. Our learning to rank model focusses on the performance at the top of the list, with the recommended items that end-users will actually see. In our model, we try to push the relevant items of users and their friends at the top of the list, while ranking low those of their foes. Furthermore, we propose a weighting strategy to capture the correlations of users' preferences with friends' trust and foes' distrust degrees in two intermediate trust- and distrust-preference user latent spaces, respectively. Our experiments on the Epinions dataset show that the proposed learning to rank model significantly outperforms other state-of-the-art methods in the presence of sparsity in users' preferences and when a part of trust and distrust relationships is not available. Furthermore, we demonstrate the crucial role of our weighting strategy in our model, to balance well the influences of friends and foes on users' preferences.