DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
(titres de publication, de périodique et noms de colloque inclus)
2008-02-22 - Article/Dans un journal avec peer-review - Anglais - 7 page(s)

Guisbiers G., Kazan M., Van Overschelde Olivier , Wautelet Michel , Pereira S., "Mechanical and Thermal Properties of Metallic and Semiconductive Nanostructures" in Journal of Physical Chemistry C: Nanomaterials, Interfaces, and Hard Matter, 112, 11, 4097-4103

  • Edition : American Chemical Society, Washington (DC)
  • Codes CREF : Résistance des matériaux (DI2112), Physique de l'état solide (DI1261), Chimie des solides (DI1316), Physique des plasmas (DI1233)
  • Unités de recherche UMONS : Physique expérimentale et biologique (M104), Chimie des interactions plasma-surface (S882)
  • Instituts UMONS : Institut de Recherche en Science et Ingénierie des Matériaux (Matériaux)
Texte intégral :

Abstract(s) :

(Anglais) Using a top-down approach, we report a theoretical investigation of the melting temperature at the nanoscale, Tm, for different shapes of “free-standing” nanostructures. To easily calculate the nanoscale melting temperature for a wide range of metals and semiconductors, a convenient shape parameter called ashape is defined. Considering this parameter, we argue why smaller size effects are observed in high bulk melting temperature materials. Using Tm, a phase transition stress model is proposed to evaluate the intrinsic strain and stress during the first steps of solidification. Then, the size effect on the Thornton & Hoffman's criterion at the nanoscale is discussed and the intrinsic residual stress determination in nanostructures is found to be essential for sizes below 100 nm. Furthermore, the inverse Hall-Petch effect, for sizes below 15 nm, can be understood by this model. Finally, the residual strain in hexagonal zinc oxide nanowires is calculated as a function of the wire dimensions.

Identifiants :
  • ISSN : 1932-7447
  • DOI : 10.1021/jp077371n