DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2006-01-12 - Article/Dans un journal avec peer-review - Anglais - 37 page(s)

Bekaert X., Boulanger Nicolas , Cnockaert S., "Spin three gauge theory revisited" in Journal of High Energy Physics [=JHEP], JHEP 0601 (2006) 052

  • Edition : Institute of Physics Publishing (IOP), Bristol (United Kingdom)
  • Codes CREF : Physique théorique et mathématique (DI1210), Mécanique quantique classique et relativiste (DI1211), Théorie quantique des champs (DI1215)
  • Unités de recherche UMONS : Mécanique et gravitation (S884)
  • Centres UMONS : Algèbre, Géométrie et Interactions fondamentales (AGIF)
Texte intégral :

Abstract(s) :

(Anglais) We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed.

Identifiants :
  • DOI : 10.1088/1126-6708/2006/01/052
  • arXiv : hep-th/0508048