DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2003-08-01 - Article/Dans un journal avec peer-review - Anglais - 10 page(s)

Tandia BM, Vandenbranden M, Wattiez Ruddy , Lakhdar Z, Ruysschaert Jean-Marie, Elouahabi A, "Identification of human plasma proteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency: implications for intravenous gene transfer." in Molecular Therapy : The Journal of the American Society of Gene Therapy

  • Edition : Nature Publishing Group, San Diego (CA)
  • Codes CREF : Biochimie (DI3112), Biotechnologie (DI3800)
  • Unités de recherche UMONS : Protéomie et Microbiologie (S828)

Abstract(s) :

(Anglais) Abstract Interaction of cationic lipid/DNA complex with the plasma is a limiting step for the cationic lipid-mediated intravenous gene transfer and expression process. Most of the plasma components that interact with the complex and inhibit its transfection efficiency are still unknown. In the present work, human plasma proteins and lipoproteins that bind to a cationic lipid/DNA complex were isolated on a sucrose density gradient and identified by 2-D gel electrophoresis. Protein binding did not result in complex dissociation or DNA degradation. The effects of several complex-binding plasma components on the transfection efficiency were studied using lung endothelial cells cultured in vitro. Lipoprotein particles caused a drastic loss of the transfection efficiency of the complex. Surprisingly, fibrinogen was found to activate the transfection process. The roles of these complex-binding plasma components on the complex uptake efficiency were quantitatively assessed using radiolabeled plasmid DNA and qualitatively evaluated using fluorescence microscopy. A good correlation was found between the effects of the complex-binding plasma components on the transfection and on cell uptake efficiencies. In contrast to what was generally believed, our data suggest that disruption of the complex does not occur when it is in contact with the plasma and therefore could not be responsible for the loss of transfection activity. Instead, coating of complexes with plasma components seems to be responsible for reduced uptake by cells, which in turn results in reduced transfection.