DI-UMONS : Dépôt institutionnel de l’université de Mons

Recherche transversale
Rechercher
(titres de publication, de périodique et noms de colloque inclus)
2017-09-01 - Article/Dans un journal avec peer-review - Anglais - 16 page(s)

Constantinou Eleni , Mens Tom , "An Empirical Comparison of Developer Retention in the RubyGems and npm Software Ecosystems" in Innovations in Systems and Software Engineering

  • Edition : Springer, Heidelberg (Germany)
  • Codes CREF : Informatique appliquée logiciel (DI2570), Informatique générale (DI1162), Analyse de systèmes informatiques (DI2572)
  • Unités de recherche UMONS : Génie Logiciel (S852)
  • Instituts UMONS : Institut de Recherche en Technologies de l’Information et Sciences de l’Informatique (InforTech), Institut de Recherche sur les Systèmes Complexes (Complexys)
Texte intégral :

Abstract(s) :

(Anglais) Software ecosystems can be viewed as socio-technical networks consisting of technical components (software packages) and social components (communities of developers) that maintain the technical components. Ecosystems evolve over time through socio-technical changes that may greatly impact the ecosystem's sustainability. Social changes like developer turnover may lead to technical degradation. This motivates the need to identify those factors leading to developer abandonment, in order to automate the process of identifying developers with high abandonment risk. This paper compares such factors for two software package ecosystems, RubyGems and npm. We analyse the evolution of their packages hosted on GitHub, considering development activity in terms of commits, and social interaction with other developers in terms of comments associated to commits, issues or pull requests. We analyse this socio-technical activity for more than 30k and 60k developers for RubyGems and npm respectively. We use survival analysis to identify which factors coincide with a lower survival probability. Our results reveal that developers with a higher probability to abandon an ecosystem: do not engage in discussions with other developers; do not have strong social and technical activity intensity; communicate or commit less frequently; and do not participate to both technical and social activities for long periods of time. Such observations could be used to automate the identification of developers with a high probability of abandoning the ecosystem and, as such, reduce the risks associated to knowledge loss.

Identifiants :
  • ISSN : 1614-5054
  • ISSN : 1614-5046

Mots-clés :
  • (Anglais) socio-technical interaction
  • (Anglais) empirical analysis
  • (Anglais) software ecosystem
  • (Anglais) survival analysis
  • (Anglais) software evolution